Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virology ; 595: 110089, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38640789

RESUMO

The early and mid-career researchers (EMCRs) of scientific communities represent the forefront of research and the future direction in which a field takes. The opinions of this key demographic are not commonly aggregated to audit fields and precisely demonstrate where challenges lie for the future. To address this, we initiated the inaugural International Emerging Researchers Workshop for the global Hepatitis B and Hepatitis D scientific community (75 individuals). The cohort was split into small discussion groups and the significant problems, challenges, and future directions were assessed. Here, we summarise the outcome of these discussions and outline the future directions suggested by the EMCR community. We show an effective approach to gauging and accumulating the ideas of EMCRs and provide a succinct summary of the significant gaps remaining in the Hepatitis B and Hepatitis D field.

2.
PLoS Pathog ; 20(3): e1012060, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442126

RESUMO

The recent discovery of Hepatitis D (HDV)-like viruses across a wide range of taxa led to the establishment of the Kolmioviridae family. Recent studies suggest that kolmiovirids can be satellites of viruses other than Hepatitis B virus (HBV), challenging the strict HBV/HDV-association dogma. Studying whether kolmiovirids are able to replicate in any animal cell they enter is essential to assess their zoonotic potential. Here, we compared replication of three kolmiovirids: HDV, rodent (RDeV) and snake (SDeV) deltavirus in vitro and in vivo. We show that SDeV has the narrowest and RDeV the broadest host cell range. High resolution imaging of cells persistently replicating these viruses revealed nuclear viral hubs with a peculiar RNA-protein organization. Finally, in vivo hydrodynamic delivery of viral replicons showed that both HDV and RDeV, but not SDeV, efficiently replicate in mouse liver, forming massive nuclear viral hubs. Our comparative analysis lays the foundation for the discovery of specific host factors controlling Kolmioviridae host-shifting.


Assuntos
Hepatite D , Vírus Delta da Hepatite , Camundongos , Animais , Humanos , Roedores , Vírus da Hepatite B/genética , Serpentes , Replicação Viral , RNA Viral/genética
4.
J Hepatol ; 80(2): 220-231, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37925078

RESUMO

BACKGROUND & AIMS: Chronic co-infection with HBV and HDV leads to the most aggressive form of chronic viral hepatitis. To date, no treatment induces efficient viral clearance, and a better characterization of virus-host interactions is required to develop new therapeutic strategies. METHODS: Using loss-of-function strategies, we validated the unexpected proviral activity of Janus kinase 1 (JAK1) - a key player in innate immunity - in the HDV life cycle and determined its mechanism of action on HDV through various functional analyses including co-immunoprecipitation assays. RESULTS: We confirmed the key role of JAK1 kinase activity in HDV infection. Moreover, our results suggest that JAK1 inhibition is associated with a modulation of ERK1/2 activation and S-HDAg phosphorylation, which is crucial for viral replication. Finally, we showed that FDA-approved JAK1-specific inhibitors are efficient antivirals in relevant in vitro models including primary human hepatocytes. CONCLUSIONS: Taken together, we uncovered JAK1 as a key host factor for HDV replication and a potential target for new antiviral treatment. IMPACT AND IMPLICATIONS: Chronic hepatitis D is the most aggressive form of chronic viral hepatitis. As no curative treatment is currently available, new therapeutic strategies based on host-targeting agents are urgently needed. Here, using loss-of-function strategies, we uncover an unexpected interaction between JAK1, a major player in the innate antiviral response, and HDV infection. We demonstrated that JAK1 kinase activity is crucial for both the phosphorylation of the delta antigen and the replication of the virus. By demonstrating the antiviral potential of several FDA-approved JAK1 inhibitors, our results could pave the way for the development of innovative therapeutic strategies to tackle this global health threat.


Assuntos
Hepatite D Crônica , Vírus Delta da Hepatite , Humanos , Vírus Delta da Hepatite/fisiologia , Janus Quinase 1 , Vírus da Hepatite B , Hepatite D Crônica/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Replicação Viral
5.
J Virol ; 97(10): e0072223, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37754761

RESUMO

IMPORTANCE: Chronic hepatitis B is the most important cause of liver cancer worldwide and affects more than 290 million people. Current treatments are mostly suppressive and rarely lead to a cure. Therefore, there is a need for novel and curative drugs that target the host or the causative agent, hepatitis B virus itself. Capsid assembly modulators are an interesting class of antiviral molecules that may one day become part of curative treatment regimens for chronic hepatitis B. Here we explore the characteristics of a particularly interesting subclass of capsid assembly modulators. These so-called non-HAP CAM-As have intriguing properties in cell culture but also clear virus-infected cells from the mouse liver in a gradual and sustained way. We believe they represent a considerable improvement over previously reported molecules and may one day be part of curative treatment combinations for chronic hepatitis B.


Assuntos
Antivirais , Capsídeo , Vírus da Hepatite B , Hepatite B Crônica , Montagem de Vírus , Animais , Humanos , Camundongos , Antivirais/classificação , Antivirais/farmacologia , Antivirais/uso terapêutico , Capsídeo/química , Capsídeo/efeitos dos fármacos , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/efeitos dos fármacos , Proteínas do Capsídeo/metabolismo , Células Cultivadas , Vírus da Hepatite B/química , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Técnicas In Vitro , Montagem de Vírus/efeitos dos fármacos , Modelos Animais de Doenças
6.
Hepatology ; 78(4): 1252-1265, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37102495

RESUMO

BACKGROUND AND AIMS: Effective therapies leading to a functional cure for chronic hepatitis B are still lacking. Class A capsid assembly modulators (CAM-As) are an attractive modality to address this unmet medical need. CAM-As induce aggregation of the HBV core protein (HBc) and lead to sustained HBsAg reductions in a chronic hepatitis B mouse model. Here, we investigate the underlying mechanism of action for CAM-A compound RG7907. APPROACH AND RESULTS: RG7907 induced extensive HBc aggregation in vitro , in hepatoma cells, and in primary hepatocytes. In the adeno-associated virus (AAV)-HBV mouse model, the RG7907 treatment led to a pronounced reduction in serum HBsAg and HBeAg, concomitant with clearance of HBsAg, HBc, and AAV-HBV episome from the liver. Transient increases in alanine transaminase, hepatocyte apoptosis, and proliferation markers were observed. These processes were confirmed by RNA sequencing, which also uncovered a role for interferon alpha and gamma signaling, including the interferon-stimulated gene 15 (ISG15) pathway. Finally, the in vitro observation of CAM-A-induced HBc-dependent cell death through apoptosis established the link of HBc aggregation to in vivo loss of infected hepatocytes. CONCLUSIONS: Our study unravels a previously unknown mechanism of action for CAM-As such as RG7907 in which HBc aggregation induces cell death, resulting in hepatocyte proliferation and loss of covalently closed circular DNA or its equivalent, possibly assisted by an induced innate immune response. This represents a promising approach to attain a functional cure for chronic hepatitis B.


Assuntos
Hepatite B Crônica , Hepatite B , Camundongos , Animais , Vírus da Hepatite B , Antígenos de Superfície da Hepatite B/metabolismo , Capsídeo/metabolismo , Hepatócitos/metabolismo , Interferon-alfa/farmacologia , Hepatite B/metabolismo , DNA Viral/genética
7.
Sci Rep ; 13(1): 6124, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059745

RESUMO

The study enrolled 284 patients with chronic hepatitis B virus infection. Participants included people with mild fibrotic lesions (32.5%), moderate to severe fibrotic lesions (27.5%), cirrhotic lesions (22%), hepatocellular carcinoma (HCC) in 5%, and people with no fibrotic lesions in 13%. Eleven SNPs within DIO2, PPARG, ATF3, AKT, GADD45A, and TBX21 were genotyped by mass spectrometry. The rs225014 TT (DIO2) and rs10865710 CC (PPARG) genotypes were independently associated with susceptibility to advanced liver fibrosis. However, cirrhosis was more prevalent in individuals with the GADD45A rs532446 TT and ATF3 rs11119982 TT genotypes. In addition, the rs225014 CC variant of DIO2 was more frequently found in patients with a diagnosis of HCC. These findings suggest that the above SNPs may play a role in HBV-induced liver damage in a Caucasian population.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/genética , Progressão da Doença , Predisposição Genética para Doença , Genótipo , Vírus da Hepatite B/genética , Hepatite B Crônica/complicações , Hepatite B Crônica/genética , Hepatite B Crônica/patologia , Cirrose Hepática/complicações , Neoplasias Hepáticas/patologia , Polimorfismo de Nucleotídeo Único , PPAR gama/genética
8.
J Hepatol ; 78(5): 958-970, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36702177

RESUMO

BACKGROUND & AIMS: Chronic coinfection with HBV and HDV leads to the most aggressive form of chronic viral hepatitis. Herein, we aimed to elucidate the molecular mechanisms underlying the widely reported observation that HDV interferes with HBV in most coinfected patients. METHODS: Patient liver tissues, primary human hepatocytes, HepaRG cells and human liver chimeric mice were used to analyze the effect of HDV on HBV using virological and RNA-sequencing analyses, as well as RNA synthesis, stability and association assays. RESULTS: Transcriptomic analyses in cell culture and mouse models of coinfection enabled us to define an HDV-induced signature, mainly composed of interferon (IFN)-stimulated genes (ISGs). We also provide evidence that ISGs are upregulated in chronically HDV/HBV-coinfected patients but not in cells that only express HDV antigen (HDAg). Inhibition of the hepatocyte IFN response partially rescued the levels of HBV parameters. We observed less HBV RNA synthesis upon HDV infection or HDV protein expression. Additionally, HDV infection or expression of HDAg alone specifically accelerated the decay of HBV RNA, and HDAg was associated with HBV RNAs. On the contrary, HDAg expression did not affect other viruses such as HCV or SARS-CoV-2. CONCLUSIONS: Our data indicate that HDV interferes with HBV through both IFN-dependent and IFN-independent mechanisms. Specifically, we uncover a new viral interference mechanism in which proteins of a satellite virus affect the RNA production of its helper virus. Exploiting these findings could pave the way to the development of new therapeutic strategies against HBV. IMPACT AND IMPLICATIONS: Although the molecular mechanisms remained unexplored, it has long been known that despite its dependency, HDV decreases HBV viremia in patients. Herein, using in vitro and in vivo models, we showed that HDV interferes with HBV through both IFN-dependent and IFN-independent mechanisms affecting HBV RNA metabolism, and we defined the HDV-induced modulation signature. The mechanisms we uncovered could pave the way for the development of new therapeutic strategies against HBV by mimicking and/or increasing the effect of HDAg on HBV RNA. Additionally, the HDV-induced modulation signature could potentially be correlated with responsiveness to IFN-α treatment, thereby helping to guide management of HBV/HDV-coinfected patients.


Assuntos
COVID-19 , Coinfecção , Hepatite B , Hepatite D , Humanos , Camundongos , Animais , Vírus Delta da Hepatite/fisiologia , Vírus da Hepatite B/fisiologia , Interferons , Antígenos da Hepatite delta/metabolismo , Hepatite D/complicações , Hepatite B/complicações , Replicação Viral/fisiologia , COVID-19/complicações , SARS-CoV-2/genética , RNA Viral/genética
9.
Antiviral Res ; 209: 105477, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36511319

RESUMO

Chronic hepatitis D is the most aggressive form of chronic viral hepatitis. It is caused by super-infection of hepatitis B virus (HBV)-infected hepatocytes with hepatitis D virus (HDV). While the recent conditional approval of bulevirtide for HDV treatment offers a new therapeutic modality in Europe, there is an unmet medical need to further improve therapy. A more detailed characterization of virus-host interactions is needed for the identification of novel therapeutic targets. Addressing this need, we engineered a new stably-transformed cell line, named HuH7-2C8D, producing high titer recombinant HDV and allowing the study of viral particles morphogenesis and infectivity. Using this culture system, where viral propagation by re-infection is limited, we observed an increased accumulation of edited version of the viral genomes within secreted HDV viral particles over time that is accompanied with a decrease in viral particle infectivity. We confirmed the interaction of HDV proteins with a previously described host factor in HuH7-2C8D cells and additionally showed that these cells are suitable for co-culture assays with other cell types such as macrophages. Finally, the use of HuH7-2C8D cells allowed to confirm the dual antiviral activity of farnesyl transferase inhibitors, including the clinical candidate lonafarnib, against HDV. In conclusion, we have established an easy-to-handle cell culture model to investigate HDV replication, morphogenesis, and host interactions. HuH7-2C8D cells are also suitable for high-throughput antiviral screening assays for the development of new therapeutic strategies.


Assuntos
Vírus Delta da Hepatite , Replicação Viral , Vírus Delta da Hepatite/genética , Linhagem Celular , Vírus da Hepatite B , Antivirais/farmacologia , Descoberta de Drogas
13.
J Clin Med ; 11(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35268440

RESUMO

Despite a preventive vaccine being available, more than 250 million people suffer from chronic hepatitis B virus (HBV) infection, a major cause of liver disease and HCC. HBV infects human hepatocytes where it establishes its genome, the cccDNA with chromosomal features. Therapies controlling HBV replication exist; however, they are not sufficient to eradicate HBV cccDNA, the main cause for HBV persistence in patients. Core protein is the building block of HBV nucleocapsid. This viral protein modulates almost every step of the HBV life cycle; hence, it represents an attractive target for the development of new antiviral therapies. Capsid assembly modulators (CAM) bind to core dimers and perturb the proper nucleocapsid assembly. The potent antiviral activity of CAM has been demonstrated in cell-based and in vivo models. Moreover, several CAMs have entered clinical development. The aim of this review is to summarize the mechanism of action (MoA) and the advancements in the clinical development of CAMs and in the characterization of their mod of action.

14.
Int J Mol Sci ; 23(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269929

RESUMO

Chronic viral hepatitis is a main cause of liver disease and hepatocellular carcinoma. There are striking similarities in the pathological impact of hepatitis B, C, and D, although these diseases are caused by very different viruses. Paired with the conventional study of protein-host interactions, the rapid technological development of -omics and bioinformatics has allowed highlighting the important role of signaling networks in viral pathogenesis. In this review, we provide an integrated look on the three major viruses associated with chronic viral hepatitis in patients, summarizing similarities and differences in virus-induced cellular signaling relevant to the viral life cycles and liver disease progression.


Assuntos
Carcinoma Hepatocelular , Infecções por Chlamydia , Hepatite B , Hepatite Viral Humana , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Hepatite B/complicações , Vírus da Hepatite B , Vírus Delta da Hepatite , Hepatite Crônica/complicações , Hepatite Viral Humana/complicações , Humanos , Neoplasias Hepáticas/patologia
15.
Antiviral Res ; 198: 105250, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35051490

RESUMO

Chronic hepatitis D is the most severe form of chronic viral hepatitis and to date, efficient therapeutic approaches against hepatitis D virus (HDV) are limited. Among the antiviral molecules currently tested in clinical trials, the farnesyl transferase inhibitor (FTI) Lonafarnib inhibits the prenylation of the large delta antigen (L-HDAg), blocking virus assembly. Given the importance of L-HDAg in the virus life cycle, we hypothesized that Lonafarnib treatment may have side effects on virus replication. Here, we setup an innovative method for the quantification of HDV RNA allowing the independent quantification of edited and non-edited versions of the HDV genome upon infection. We demonstrated that FTI treatment of HBV/HDV co-infected dHepaRG or primary human hepatocytes leads to an accumulation of intracellular HDV RNAs and a marked increase in the levels of edited RNAs non only within the infected cells but also in the viral particles that are produced. Interestingly, these viral particles were less infectious, probably due to an enrichment in edited genomes that are packaged, leading to unproductive infection given the absence of S-HDAg synthesis after viral entry. Taken together, we setup an innovative quantification method allowing the investigation of RNA editing during HDV infection in a simple, fast, clinically-relevant assay and demonstrated for the first time the dual antiviral activity of FTI on HDV infection.


Assuntos
Vírus Delta da Hepatite , Edição de RNA , Antivirais/farmacologia , Vírus Delta da Hepatite/genética , Antígenos da Hepatite delta/metabolismo , Humanos , RNA Viral/genética , Transferases/genética , Replicação Viral
16.
Gut ; 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36591611

RESUMO

OBJECTIVES: Chronic hepatitis B virus (HBV) infection is a leading cause of liver disease and hepatocellular carcinoma. A key feature of HBV replication is the synthesis of the covalently close circular (ccc)DNA, not targeted by current treatments and whose elimination would be crucial for viral cure. To date, little is known about cccDNA formation. One major challenge to address this urgent question is the absence of robust models for the study of cccDNA biology. DESIGN: We established a cell-based HBV cccDNA reporter assay and performed a loss-of-function screen targeting 239 genes encoding the human DNA damage response machinery. RESULTS: Overcoming the limitations of current models, the reporter assay enables to quantity cccDNA levels using a robust ELISA as a readout. A loss-of-function screen identified 27 candidate cccDNA host factors, including Y box binding protein 1 (YBX1), a DNA binding protein regulating transcription and translation. Validation studies in authentic infection models revealed a robust decrease in HBV cccDNA levels following silencing, providing proof-of-concept for the importance of YBX1 in the early steps of the HBV life cycle. In patients, YBX1 expression robustly correlates with both HBV load and liver disease progression. CONCLUSION: Our cell-based reporter assay enables the discovery of HBV cccDNA host factors including YBX1 and is suitable for the characterisation of cccDNA-related host factors, antiviral targets and compounds.

18.
Nat Commun ; 12(1): 5525, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535664

RESUMO

Chronic liver disease and hepatocellular carcinoma (HCC) are life-threatening diseases with limited treatment options. The lack of clinically relevant/tractable experimental models hampers therapeutic discovery. Here, we develop a simple and robust human liver cell-based system modeling a clinical prognostic liver signature (PLS) predicting long-term liver disease progression toward HCC. Using the PLS as a readout, followed by validation in nonalcoholic steatohepatitis/fibrosis/HCC animal models and patient-derived liver spheroids, we identify nizatidine, a histamine receptor H2 (HRH2) blocker, for treatment of advanced liver disease and HCC chemoprevention. Moreover, perturbation studies combined with single cell RNA-Seq analyses of patient liver tissues uncover hepatocytes and HRH2+, CLEC5Ahigh, MARCOlow liver macrophages as potential nizatidine targets. The PLS model combined with single cell RNA-Seq of patient tissues enables discovery of urgently needed targets and therapeutics for treatment of advanced liver disease and cancer prevention.


Assuntos
Descoberta de Drogas , Fígado/patologia , Modelos Biológicos , Animais , Carcinogênese/patologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Quimioprevenção , Estudos de Coortes , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Hepacivirus/fisiologia , Hepatite C/genética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Vigilância Imunológica/efeitos dos fármacos , Inflamação/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Knockout , Nizatidina/farmacologia , Prognóstico , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/genética
19.
Viruses ; 13(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34452397

RESUMO

Chronic hepatitis D is one of the most severe and aggressive forms of chronic viral hepatitis with a high risk of developing hepatocellular carcinoma (HCC). It results from the co-infection of the liver with the hepatitis B virus (HBV) and its satellite, the hepatitis D virus (HDV). Although current therapies can control HBV infection, no treatment that efficiently eliminates HDV is available and novel therapeutic strategies are needed. Although the HDV cycle is well described, the lack of simple experimental models has restricted the study of host-virus interactions, even if they represent relevant therapeutic targets. In the last few years, the discovery of the sodium taurocholate co-transporting polypeptide (NTCP) as a key cellular entry factor for HBV and HDV has allowed the development of new cell culture models susceptible to HBV and HDV infection. In this review, we summarize the main in vitro model systems used for the study of HDV entry and infection, discuss their benefits and limitations and highlight perspectives for future developments.


Assuntos
Técnicas de Cultura de Células/métodos , Vírus Delta da Hepatite/fisiologia , Hepatócitos/virologia , Internalização do Vírus , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Células Cultivadas , Vírus da Hepatite B/metabolismo , Hepatite D/complicações , Hepatite D/virologia , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Simportadores/metabolismo
20.
Life Sci Alliance ; 4(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34290079

RESUMO

Chronic hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC) world-wide. The molecular mechanisms of viral hepatocarcinogenesis are still partially understood. Here, we applied two complementary single-cell RNA-sequencing protocols to investigate HBV-HCC host cell interactions at the single cell level of patient-derived HCC. Computational analyses revealed a marked HCC heterogeneity with a robust and significant correlation between HBV reads and cancer cell differentiation. Viral reads significantly correlated with the expression of HBV-dependency factors such as HLF in different tumor compartments. Analyses of virus-induced host responses identified previously undiscovered pathways mediating viral carcinogenesis, such as E2F- and MYC targets as well as adipogenesis. Mapping of fused HBV-host cell transcripts allowed the characterization of integration sites in individual cancer cells. Collectively, single-cell RNA-Seq unravels heterogeneity and compartmentalization of both, virus and cancer identifying new candidate pathways for viral hepatocarcinogenesis. The perturbation of pro-carcinogenic gene expression even at low HBV levels highlights the need of HBV cure to eliminate HCC risk.


Assuntos
Carcinoma Hepatocelular/etiologia , Transformação Celular Viral , Vírus da Hepatite B/fisiologia , Hepatite B/complicações , Hepatite B/virologia , Neoplasias Hepáticas/etiologia , Adulto , Idoso , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Hepatite B Crônica/complicações , Hepatite B Crônica/virologia , Humanos , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , RNA Viral , Análise de Célula Única/métodos , Transcriptoma , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...